Analytical modeling of silicon thermoelectric microcooler

نویسندگان

  • Peng Wang
  • Avram Bar-Cohen
  • Bao Yang
  • Gary L. Solbrekken
  • Ali Shakouri
چکیده

Due to its inherently favorable properties, doped single-crystal silicon has potential application as an on-chip thermoelectric microcooler for advanced integrated circuits. In this paper, an analytical thermal model for silicon microcooler, which couples Peltier cooling with heat conduction and heat generation in the silicon substrate, and which includes heat conduction and heat generation in the metal lead, is derived and used to study the thermal characteristics of silicon thermoelectric microcoolers. The analytical modeling results are shown to be in good agreement with the experimental data and the results from electrothermal numerical simulations. The effects of metal lead, electric contact resistance, silicon doping concentrations, and microcooler sizes on the cooling performance are investigated. The cooling potential of such thermoelectric devices, represented by peak cooling and maximum cooling heat flux on the microcooler surface, is addressed. © 2006 American Institute of Physics. DOI: 10.1063/1.2211328

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On - Chip Thermoelectric Cooling of Semiconductor Hot Spot

Title of Dissertation: On-Chip Thermoelectric Cooling of Semiconductor Hot Spot Peng Wang, Doctor of Philosophy, 2007 Directed By: Professor Avram Bar-Cohen Assistant Professor Bao Yang Department of Mechanical Engineering The Moore’s Law progression in semiconductor technology, including shrinking feature size, increasing transistor density, and faster circuit speeds, is leading to increasing ...

متن کامل

Thermal Modeling of Extreme Heat Flux Microchannel Coolers for GaN-on-SiC Semiconductor Devices

Gallium nitride (GaN) high-electron-mobility transistors (HEMTs) dissipate high power densities which generate hotspots and cause thermomechanical problems. Here, we propose and simulate GaN-based HEMT technologies that can remove power densities exceeding 30 kW/cm at relatively low mass flow rate and pressure drop. Thermal performance of the microcooler module is investigated by modeling both ...

متن کامل

Thermoelectric Properties of Scaled Silicon Nanostructures Using the spds*-SO Atomistic Tight-Binding Model

The progress in the synthesis of nanomaterials allows the realization of low-dimensional thermoelectric devices based on 1D nanowires (NWs) and 2D superlattices. These confined systems offer the possibility of partially engineering the electronic and phononic dispersions and scattering mechanisms. Thus, the electrical and thermal conductivity, and the Seebeck coefficient can be designed to some...

متن کامل

Nonlinear Modeling and Investigating the Nonlinear Effects on Frequency Response of Silicon Bulk-mode Ring Resonator

This paper presents a nonlinear analytical model for micromechanical silicon ring resonators with bulk-mode vibrations. A distributed element model has been developed to describe the dynamic behavior of the micromechanical ring resonator. This model shows the nonlinear effects in a silicon ring resonator focusing on the effect of large amplitudes around the resonance frequency, material and ele...

متن کامل

Thermoelectric Power Factor of Narrow Silicon Nanowires from Atomistic Considerations

Silicon nanowires (NWs) of small diameters have attracted significant attention as efficient thermoelectric materials since the work of Hicks and Dresselhaus [1], who pointed out that low dimensionality can be beneficial to the Seebeck coefficient. The recent results of Boukai et al. [2], and Hochbaum et al. [3] showed that it is indeed possible to achieve ZT~0.5 at room temperature in Si NWs o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006